|
|
Main menu
HELP
|
Latest News The first edition of the ATTIRE Sumer School was held in Yenne, from June 23 to June 29. 46 participants came from 11 countries (France, Germany, UK, Belgium, Sweden, Denmark, Chile, China, Iraq, South Korea, USA). Thanks to all of them.
Key Information The ATTIRE summer school will cover all analytic aspects of tomographic image reconstruction and introduce the most advanced topics in the field. Iterative methods will not be presented. We will be offering a choice of either 32 hours of lectures or 23 lecture hours and 8 hours of hands-on computer labs. Lectures will be given by renowned researchers, in an informal setting. Although the target audience is students, post-docs and researchers, it is open to any interested parties. We anticipate about 40 attendees with a strict maximum of 50. The registration fees cover lectures from Monday to Friday (with an optional social outing on Wednesday afternoon), single-room accommodation from Sunday evening through Saturday morning, and all meals and coffee breaks. We strongly encourage all participants to stay at the summer school site and to take all meals on-site. Contact us if you have special dietary needs. We will provide certificates of attendance for all those who request them, and certificates of achievement for those who successfully complete an optional final exam.
Motivation Image reconstruction from projections plays a key role in medical and industrial tomography. Analytical methods in tomography have long played a major role in applications. They model the problem as an integral equation such as the Radon transform or one of its generalisations, for which closed form solutions are known, which allow fast numerical implementations. In contrast, iterative methods in tomography use a discrete model of the imaging problem and solve the resulting equations by means of iterative algorithms. Over the past twenty years, iterative methods have progressively replaced analytical methods in positron emission tomography, in single-photon emission computed tomography and to a lesser but growing extent also in X-ray CT. As a result, a growing number of scientists involved in image reconstruction are unaware of recent advances in analytical methods or even of its basic principles. Yet, even when iterative algorithms are found optimal for a specific application, critical issues such as identifiability (is the solution unique?) and stability (is the solution stable?) can only be adressed using analytical methods. Such issues are important when optimizing data acquisition; the role of analytic methods in tomography extends therefore well beyond the actual calculation of a solution. The objective of the ATTIRE summer school is to offer an up-to-date and in-depth overview of this fascinating field.
Is this Summer School too mathematical for me? Probably not! The prerequisites are a first course in linear algebra, calculus of 2 or 3 variables (jacobian of change of variables such as polar to rectangular), notions of Fourier series, Fourier transforms, including the convolution of two functions and familarity with the Dirac delta function. This background material is normally covered in the first three years of most undergraduate programs in engineering, physics, mathematics and computer science. The content of this summer school is equivalent to course material given at the masters or PhD level in fields such as medical physics, applied mathematics, imaging science, computational science, biomedical engineering.
To get the latest news from the Summer School
Check the website regularly Sign up to our Keep Me Posted ! mailing list |